Exploration of Quenching Pathways of Multiluminescent Acenes Using the GRRM Method with the SF-TDDFT Method.
نویسندگان
چکیده
The quenching pathways were investigated for three types of multiluminescent acene derivatives, which show environment-dependent fluorescence. Spin-flip time dependent density functional theory (SF-TDDFT) combined with the Global Reaction Route mapping (GRRM) strategy is employed to locate minimum-energy conical intersections (MECIs). The energies and geometries of the MECIs relative to the Franck-Condon (FC) state control the difference in fluorescence behavior among the three derivatives. For the molecule with a phenyamide moiety, a MECI with energy lower than the FC state with large geometrical change from V-type to flat structure provides an efficient internal conversion (quenching) pathway in solution. For the same molecule, in a solid, this large geometrical change is inhibited, and the second MECI, with an energy lower than FC but higher than the first MECI requiring only a small geometry change of CH out-of-plane bending, contributes to the quenching. The molecule with the napthaleneimide moiety has only one low-energy MECI that requires large geometrical change from the V-type to flat structure. Although this MECI provides the quenching pathway in solution, in the solid, this large motion is inhibited, and the molecule will stay in the excited state and emit. The molecule with an anthraceneimide moiety has no conical intersection lower than the FC state, and no quenching pathway is available in solution or solid. In addition, in this molecule, at the local minimum of the excited state, the dipole transition to the ground state is allowed, and this molecule prefers emission rather than internal conversion.
منابع مشابه
Spin-flip, tensor equation-of-motion configuration interaction with a density-functional correction: A spin-complete method for exploring excited-state potential energy surfaces.
We revisit the formalism of the spin-adapted, spin-flip (SA-SF) configuration-interaction singles (CIS) method based on a tensor equation-of-motion formalism that affords proper spin eigenstates without sacrificing single-reference simplicity. Matrix elements for SA-SF-CIS are then modified in a manner similar to collinear spin-flip time-dependent density functional theory (SF-TDDFT), to includ...
متن کاملUltrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method
The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...
متن کاملResidual Stresses Measurement of a Quenched Cylinder using Slitting Method
Residual Stress measurement has gained interests among researchers for many years due to its great influence on the structural integrity. Slitting method is one of the destructive techniques that relies on the introduction of an increasing cut to a part containing residual stresses. Similar to all other mechanical strain relief techniques, slitting also suffers from its shortcomings during the ...
متن کاملBiological, Electronic, NLO, NBO, TDDFT and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole-3-carboxamide
Biological Electronic, Optical Properties, and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide are studied by using a combination of DFT/B3LYP method and 6-311G (d, p) basis set. Optimized parameters of the title molecule are well-matched with the experiments. The NLO properties of 1-benzyl-4-formyl-1H-pyrrole 3carboxamide have been examined with the help of Polarizability...
متن کاملThe spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals
An extension of density functional theory to situations with significant nondynamical correlation is presented. The method is based on the spin–flip ~SF! approach which is capable of describing multireference wave functions within a single reference formalism as spin–flipping, e.g., a→b, excitations from a high-spin (M s51) triplet reference state. An implementation of the spin–flip approach wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 119 47 شماره
صفحات -
تاریخ انتشار 2015